using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Security.Cryptography; using System.Text; using System.Threading.Tasks; namespace API.Model { public class EncryptDecryptUtility { protected static string saltValue = "K0r3@GM3"; protected static string hashAlgorithm = "SHA1"; protected static int passwordIterations = 5; protected static string initVector = "P@s$w0rDGm3KoR3@"; protected static int keySize = 256; /// /// Encrypts specified plaintext using Rijndael symmetric key algorithm /// and returns a base64-encoded result. /// /// Plain Text to Encrypt /// Pass Phrase to use in Password Generation /// Encrypted text encoded into Base 64 text format public static string Encrypt(string plainText, string passPhrase) { // Convert strings into byte arrays. // Let us assume that strings only contain ASCII codes. // If strings include Unicode characters, use Unicode, UTF7, or UTF8 // encoding. byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector); byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue); // Convert our plaintext into a byte array. // Let us assume that plaintext contains UTF8-encoded characters. byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText); // First, we must create a password, from which the key will be derived. // This password will be generated from the specified passphrase and // salt value. The password will be created using the specified hash // algorithm. Password creation can be done in several iterations. var password = new PasswordDeriveBytes( passPhrase, saltValueBytes, hashAlgorithm, passwordIterations); // Use the password to generate pseudo-random bytes for the encryption // key. Specify the size of the key in bytes (instead of bits). #pragma warning disable 618, 612 byte[] keyBytes = password.GetBytes(keySize / 8); #pragma warning restore 618, 612 // Create uninitialized Rijndael encryption object. var symmetricKey = new RijndaelManaged(); // It is reasonable to set encryption mode to Cipher Block Chaining // (CBC). Use default options for other symmetric key parameters. symmetricKey.Mode = CipherMode.CBC; // Generate encryptor from the existing key bytes and initialization // vector. Key size will be defined based on the number of the key // bytes. ICryptoTransform encryptor = symmetricKey.CreateEncryptor( keyBytes, initVectorBytes); var memoryStream = new MemoryStream(); // Define memory stream which will be used to hold encrypted data. var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write); // Start encrypting. cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length); // Finish encrypting. cryptoStream.FlushFinalBlock(); // Convert our encrypted data from a memory stream into a byte array. byte[] cipherTextBytes = memoryStream.ToArray(); // Close both streams. memoryStream.Close(); cryptoStream.Close(); // Convert encrypted data into a base64-encoded string. string cipherText = Convert.ToBase64String(cipherTextBytes); // Return encrypted string. return cipherText; } /// /// Decrypts specified cipherText using Rijndael symmetric key algorithm /// and returns a plain text result. /// /// Encryted Text /// Pass Phrase used in Password Generation /// public static string Decrypt(string cipherText, string passPhrase) { // Convert strings defining encryption key characteristics into byte // arrays. Let us assume that strings only contain ASCII codes. // If strings include Unicode characters, use Unicode, UTF7, or UTF8 // encoding. byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector); byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue); // Convert our ciphertext into a byte array. byte[] cipherTextBytes = Convert.FromBase64String(cipherText); // First, we must create a password, from which the key will be // derived. This password will be generated from the specified // passphrase and salt value. The password will be created using // the specified hash algorithm. Password creation can be done in // several iterations. var password = new PasswordDeriveBytes( passPhrase, saltValueBytes, hashAlgorithm, passwordIterations); // Use the password to generate pseudo-random bytes for the encryption // key. Specify the size of the key in bytes (instead of bits). #pragma warning disable 618, 612 byte[] keyBytes = password.GetBytes(keySize / 8); #pragma warning restore 618, 612 // Create uninitialized Rijndael encryption object. var symmetricKey = new RijndaelManaged(); // It is reasonable to set encryption mode to Cipher Block Chaining // (CBC). Use default options for other symmetric key parameters. symmetricKey.Mode = CipherMode.CBC; // Generate decryptor from the existing key bytes and initialization // vector. Key size will be defined based on the number of the key // bytes. ICryptoTransform decryptor = symmetricKey.CreateDecryptor( keyBytes, initVectorBytes); // Define memory stream which will be used to hold encrypted data. var memoryStream = new MemoryStream(cipherTextBytes); // Define cryptographic stream (always use Read mode for encryption). var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read); // Since at this point we don't know what the size of decrypted data // will be, allocate the buffer long enough to hold ciphertext; // plaintext is never longer than ciphertext. var plainTextBytes = new byte[cipherTextBytes.Length]; // Start decrypting. int decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length); // Close both streams. memoryStream.Close(); cryptoStream.Close(); // Convert decrypted data into a string. // Let us assume that the original plaintext string was UTF8-encoded. string plainText = Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount); // Return decrypted string. return plainText; } } }